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Abstract—Combining match scores in multibiometrics via
fusion is a well-established approach to improving recognition
performances. However, when scores are missing, this can de-
grade performance, as well as limit the possible fusion techniques
that can be applied. Imputation is a technique for estimating
reasonable values to replace missing data and an approach that
has previously shown promise in addressing missing scores in
multibiometrics. In this paper, we evaluate various approaches
to imputation methods on three multimodal biometric score
datasets: NIST BSSR1, BIOCOP2008, and MIT LL TRIMODAL,
and investigate the factors which might influence the effective-
ness of imputation. Our studies reveal three key observations:
(1) Imputation is preferable to not imputing missing scores,
even when the fusion rule does not necessitate complete score
data. (2) Balancing the classes in the training data is crucial
to mitigate biases in the imputation technique and prevent
favoritism towards the overrepresented class, even if it involves
dropping a substantial number of score vectors. (3) Multivariate
imputation approaches exhibit better estimation for genuine
scores, while univariate imputation approaches yield stronger
results for imputed imposter scores.

Index Terms—Imputation, Fusion, Multibiometrics

I. INTRODUCTION

Biometric systems are indispensable for recognizing in-
dividuals based on the uniqueness of their biological and
behavioral traits such as face, fingerprint, iris, voice, and gait
[1]. However, in many real-world applications, the reliance on
a single biometric modality may not be sufficient to meet the
criteria of high recognition accuracy and enhanced security.
As a result, the fusion of multiple biometric modalities or
algorithms has become a crucial avenue of research and devel-
opment. In addition to improving performance and increasing
security [2]–[5], using multiple biometrics can also improve
accessibility. By incorporating different biometric modalities,
biometric systems can accommodate individuals with varying
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physical characteristics or limitations. For example, individ-
uals who may have difficulty providing a fingerprint due to
a physical disability can still participate in the system by
utilizing their face or voice as an alternative modality [6],
[7]. However if the fusion approach is not designed carefully,
the benefits of fusion can be stymied by an unnecessarily
convoluted system with slow performance [8].

Biometric fusion can be accomplished at multiple levels,
including data, feature, score, decision, and rank levels. In
score-level fusion, the match scores from the participating
modalities or matchers are combined. One design decision
when considering score-level fusion is how to handle missing
match score values. Missing scores can arise from various
factors within a biometric system. This includes failures in
acquiring the biometric sample or encountering samples of
insufficient quality. Additionally, the integration of new bio-
metric modalities into an existing system may introduce a dis-
crepancy where the input probe data contains more modalities
than the corresponding gallery identities, resulting in a missing
data scenario. While some fusion techniques can be applied to
data with missing values, such as the simple sum rule, 1 many
fusion techniques, however, are not designed to implicitly
account for missing scores. In these instances, a choice must
be made: either ignore the score vectors that contain missing
values or replace missing values with an estimated value (a
process known as imputation). If the proportion of missing
data is small, simply ignoring those samples may not influence
overall aggregate performance. However, if there is a large
proportion of missing data, ignoring incomplete data may be
harmful to the performance. Imputation can help address these
situations. Additionally, it has been shown that implementing
imputation techniques can improve biometric recognition per-
formance even when not required by the fusion rule [9]. The
authors in [9] show that applying the simple sum rule with the
imputed score data frequently improved both verification and
identification performance in biometric recognition tasks even
when up to 90% of data was incomplete. However, imputation
can also add undesirable computational and time complexity
to a multibiometric system.

1A score vector consists of scores from multiple matchers.
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II. BACKGROUND

Fusion in multibiometrics encompasses various levels of
integration, including data, feature, score, decision, or rank
[1]. Among these, score level fusion has received significant
attention due to its applicability when working with biometric
systems that provide match scores rather than raw data or
features.

The simple sum rule is a popular choice of fusion thanks
to its straight forward approach that often produces strong
recognition accuracies. Simple sum fusion is a transformation-
based approach, i.e, since all scores must share a common
range, a transformation is required (e.g., normalizing scores
into the range of [0-1]). Other approaches to score-level fusion
include classifier-based techniques [10], [11] and density-
based techniques [12]. These techniques often require the
estimation of a number of parameters and, hence, depend on
the availability and representativeness of the training data.

When a fusion technique requires score data to be com-
plete, careful consideration must be paid to how the data is
missing. For this analysis, we define a score vector as the
vector of match scores between identities i and j, where
sij = [s1, ..., sm] for the m modalities present.

Rubin defines the following patterns of missing values [13]:
Missing Completely at Random (MCAR), Missing at Random
(MAR), and Missing Not at Random (MNAR). Accurately
identifying the reason for missing data is vital, as the suitabil-
ity of imputation methods depends on whether the missingness
follows the MCAR or MAR assumptions. It is important to
note that MNAR can introduce biases and lead to erroneous
conclusions if not properly addressed. Assuming the missing-
ness is either MCAR or MAR, the literature provides various
approaches for handling missing data, which are outlined in
the following paragraphs.

One option for missing data is to simply ignore vectors
with missing scores. This approach is referred to as Listwise
Deletion [14] and works if there is only a small proportion
of missing data and that missing data is truly MCAR. If
data is missing because of a failing sensor, for instance, the
missing values are due to the sensor and, thus, a bias would
be introduced into the analysis. A drawback of this approach
is that otherwise usable score vectors are lost.

Imputation is an alternative approach to listwise deletion. A
univariate approach to imputation is to simply replace missing
values with the corresponding modality’s mean or median
score observed in the training data. This approach is referred
to as univariate because imputation is only dependent on one
modality and is unaffected by other modalities. For example,
consider a scenario presented in Table I. Median imputation,
for example, would replace the face modality’s missing score
with 0.41 (the median of the available face modality scores
from the face scores in the training data) and the missing
fingerprint score would be replaced with 0.74.

Another imputation approach leverages potential relation-
ships between modality scores to better estimate the missing
value. One such multivariate approach is Multivariate Imputa-
tion by Chained Equations (MICE), where missing values are

TABLE I: A simple example of a score dataset with missing
values, denoted as ?.

Subject Face Fingerprint Iris
Subject 1 ? 0.74 1.00
Subject 2 0.41 0.89 0.47
Subject 3 0.27 ? 0.03
Subject 4 0.85 0.00 0.31

temporarily filled with a placeholder value and then iteratively
updated using a trained machine learning model [15].

In the given example, shown in Table I, both the face and
iris missing values are initialized with each modality’s mean
or median. The scores of individual modalities are sequentially
and iteratively updated with a specified machine learning
classifier. Once the classifier has been trained, the missing
values are updated from the initial placeholder value to the
value predicted by the trained classifier, and then the next
modality’s scores are fixed and the classifier is trained again
to update the placeholder values. This process is repeated for
a specified number of iterations, or until the imputed values
stop changing between iterations.

Previous studies have shown that using imputation methods
can reliably improve recognition performance in multibiomet-
ric systems when scores are missing [9], [16]. Alternatively,
fusion approaches that can adapt to missing data points, such
as a likelihood ratio scheme that incorporates both rank and
score, can also be used [17], [18].

III. APPROACH

The experiments in this paper are conducted on 3 multi-
modal biometric datasets (described in detail below). It should
be noted that only match scores are available in these datasets,
and no additional information about the samples or the sample
quality is known.

For the MIT LL TRIMODAL dataset, scores are distributed
in development (dev) and test sets. In this dataset, the training
phase is conducted on the dev set, which comprises less than
10% of the total MIT LL TRIMODAL dataset. The remaining
two datasets are randomly divided into train (80%) and test
(20%) sets. All dataset partitions are subject disjoint, ensuring
that the data used for training and testing do not overlap, and
all imputation approaches applied to the test set are exclusively
derived from calculations performed on the training set.

We next simulate up to 90% incomplete score vectors on
3 versions of each dataset: randomly missing across all score
vectors, randomly missing from genuine score vectors, and
randomly missing from imposter score vectors. To ensure the
robustness of our findings, we repeat this simulation process
five times on the complete training and testing partitions of
the datasets.

We finally compare the performance of applying the sim-
ple sum fusion on the non-imputed version to the imputed
versions, noting the mean Pearson’s pairwise and Spearman’s
Rank correlation coefficients between scores of all possible
modality pairs in the dataset. This experimental setup is
summarized in Table II.
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TABLE II: Summary of settings used in the experiments.

Experimental Parameter Settings

Multibiometric Datasets
NIST BSSR1 [19]
BIOCOP2008
MIT LL TRIMODAL [20]

Training, Testing Split 80%, 20% (NIST BSSR1, BIOCOP2008 )
7%, 93% (MIT LL TRIMODAL)

# of Missing Score Simulations 5

% Missing [0, 10, 20, 30, 40,
50, 60, 70, 80, 90]

Univariate Imputations Mean
Median

Multivariate Imputations
Bayesian Regression [21]
Decision Tree [22]
K Nearest Neighbors [23]

Fusion Applied Simple Sum Fusion

Modality Relationship Metrics Pearson Pairwise Correlation
Spearman Rank Correlation

A. Datasets

This paper uses 3 multimodal datasets: NIST BSSR1 [19]2,
BIOCOP2008 , and MIT LL TRIMODAL [20]. In all these
datasets, only the similarity scores are available, and only
complete score vectors are analyzed. A brief description of
these datasets is outlined below, and a summary is provided
in Table III.

The BIOCOP2008 multimodal score dataset is produced by
a multichannel CNN that performs cross-modal matching of
face images with iris images. The CNN is trained on data
collected from the BioCop 2008 ocular dataset, consisting
of RGB face and NIR ocular images. From the RGB face
images, the left and right eyes are cropped and aligned with
the corresponding NIR images. Three copies of the NIR ocular
image are stacked on top of the RGB image, creating a 6
channel patch which is then fed into a multichannel CNN to
produce similarity scores. In addition to the ocular images
for left and right eyes, the irises for each are cropped out to
obtain a new type of score belonging to the iris (diagrammed
in Figure 1). This process produces 4 types of scores that form
the score vector between 2 subjects: left ocular, right ocular,
left iris, and right iris. In this dataset, approximately 30% of
the score vectors contain naturally occurring missing score
values.

The NIST BSSR1 multimodal dataset comprises similarity
scores obtained from four modalities: left thumbprint, right
thumbprint, face matcher C, and face matcher G. These scores
are derived by comparing a subject’s sample against the
samples of identities in a gallery consisting of 517 subjects.
Note, the provided face matcher scores come from matching
algorithms NIST generically refers to as C and G.

The MIT LL TRIMODAL multimodal dataset is created by
collecting scores from high quality face and speech modalities
present in the VoxCeleb-H dataset (referred to as the hard-
set) [24]. In addition to the face and speech modalities, a text
modality is pulled from a subset of the PAN Celebrity Profiling
Twitter dataset [25]. Note, as opposed to the previous datasets
where the amount of imposter score vectors vastly outnumber

2NIST BSSR1 dataset is available at https://www.nist.gov/itl/iad/
image-group/nist-biometric-scores-set-bssr1
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Fig. 1: Diagram of iris and ocular images cropped from ocular
region in the BIOCOP2008 dataset images (RGB facial images
top, NIR ocular images bottom).

the genuine score vectors, the majority of the score vectors in
the MIT LL TRIMODAL dataset are genuine.

TABLE III: Summary of Multibiometric datasets analyzed.

Modalities Score Vectors Genuine

BIOCOP2008 4 139,230 435 (0.31%)
NIST BSSR1 4 133,903 517 (0.39%)
MIT LL TRIMODAL 3 107,471 77,789 (72.38%)

B. Missing Score Simulations

We simulate missing score data from 0% missing up to 90%
missing. To simulate these missing scores, we first randomly
select the score vectors to be corrupted. From each of these
selected vectors, a random number between 1 and the number
of modalities-1 of the vector’s scores is dropped. This ensures
that at least one score will be dropped and at most all-but-
one score will be dropped. The pseudocode for this process
is summarized in Algorithm 1. This process is repeated 5
times on the train and test sets. For the BIOCOP2008 dataset,
which contains naturally occurring missing score values, we
first drop the incomplete score vectors before simulation. Note,
we provide the performance of the simulated missing values to
the naturally occurring missing values in the Results section.

Algorithm 1 Simulation of Missing Data

1: for proportion = 0, 10, 20, . . . , 90 do
2: n = Integer

(
proportion

100 × length(score data)
)

3: corrupted = random.sample(n, score data)
4: for vector ∈ corrupted do
5: amount2drop = random(1, length(modalities) − 1)
6: dropped = random.sample(amount2drop, vector)
7: score data[dropped] = NaN
8: end for
9: end for

We apply this process to multiple versions of each dataset:
Genuine Missing, Imposter Missing, and Any Missing. For the
Genuine Missing, only the vectors belonging to the genuine
label are altered to contain missing values. Likewise, the
Imposter Missing indicates only imposter vectors have been
altered. Any Missing contains randomly simulated missing
values regardless of the label.
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TABLE IV: BIOCOP2008 Comparison of original and bal-
anced dataset versions

Original Balanced

Score Vectors 139,230 870
Genuine Score Vectors 435 435
Imposter Score Vectors 138,795 435

TABLE V: NIST BSSR1 Comparison of original and balanced
dataset versions

Original Balanced

Score Vectors 133,903 1,034
Genuine Score Vectors 517 517
Imposter Score Vectors 133,386 517

Because the genuine and imposter classes are often un-
balanced, we also consider a balanced training set for the
above versions. For example, in the NIST BSSR1 dataset each
subject id contains a score vector for every subject in the
gallery. That is, for every 1 genuine score vector, there are
516 imposter score vectors, leading to the potential for over-
fitting. We consider a balanced version of the training dataset,
where we randomly down sample from the larger class to
be the same size as the smaller class. Note that the results
presented in Section IV have been generated on the same test
set. Tables IV, V, and VI show the differences between the
original dataset and the balanced dataset versions.

C. Imputation

For our analysis, we consider the verification performance
of simple sum fusion on the simulated missing dataset as
the baseline performance. We then apply univariate mean and
median imputations, as well as multivariate imputation through
MICE with Bayesian, Decision Tree, and KNN regressor
models. We additionally examine how reducing training data
impacts imputation outcomes. Note that none of the imputation
techniques use vector labels (i.e., genuine or imposter), but
rather are only calculated on scores within the modality
(univariate) or scores across modalities (multivariate). These
models are defined below.

Univariate imputation approaches utilize only the scores
of the missing score’s modality from the training set. Mean
imputation replaces missing scores within a modality with the
mean score of the available scores for that modality in the
training set. Similarly, Median imputation replaces missing
scores within a modality with the median score of the available
scores for that modality in the training set.

TABLE VI: MIT LL TRIMODAL Comparison of original and
balanced dataset versions

Original Balanced

Score Vectors 107,471 59,364
Genuine Score Vectors 77,789 29,682
Imposter Score Vectors 29,682 29,682

In addition to the above univariate approaches, we apply
multivariate imputation methods using the MICE method (de-
scribed in Section II) with the following supervised models. It
should be noted that emphasis was not placed on the parameter
tuning in these models, and it is possible performance could
be further improved with parameter optimization strategies.

MICE with Bayesian Ridge Regression is a probabilistic
model of regression p(y | X,w, α) = N (y | Xw,α), where
parameters are estimated by maximizing the log marginal
likelihood.

MICE with Decision Tree Regression is a non-parametric
model of regression. Decision Trees aim to learn a hierarchy
of decision rules inferred from the training data’s features.
This approach can potentially be more resilient to violations
in underlying model assumptions; however it can also be prone
to over-fitting.

MICE with KNN Regression imputation applies a K Near-
est Neighbor (KNN) approach. Score vectors in the training
data are sorted by distance, and the scores of the k-nearest
neighbors (i.e. those with the smallest distances) are averaged.
The experiments presented here set k to 5 neighbors and use
the Euclidean distance to measure the distance of 2 points in
the m dimensional space.

IV. RESULTS

In this section we highlight a small subset of the results from
the experimental approach described above. Here we highlight
the verification performance at False Match Rate (FMR) =
0.1% on the 50% missing levels in Figures 2 and 3 3.

In both the unbalanced and balanced versions, we see that
fusion performance for the Any Missing version the MICE with
Bayesian Ridge Regression consistently improves performance
over applying no imputation at all (even if it is not the best
imputation technique for each dataset). However we note that
the verification performance of the test set varies between
the approach trained on balanced data and the approach
trained with the unbalanced data. In the unbalanced training
approaches, the imputed genuine scores do not show such a
clear gain for the BIOCOP2008 and NIST BSSR1 datasets,
where there are substantially fewer genuine scores to train
imputation methods on. Conversely the MIT LL TRIMODAL
dataset contains a larger proportion of genuine scores in
which to train imputation methods (Figure 2). This observation
highlights the biases introduced by the overrepresented class
in the training set. However, we also emphasize that despite
the exclusion of a significant number of valid score vectors
to achieve class balance, the overall verification performances
are not severely compromised. While more training samples
are generally preferred in machine learning, our observations
remain consistent regardless of training data size.

Additionally, our analysis indicates that multivariate ap-
proaches outperform univariate approaches when imputing
missing genuine scores, while mean or median imputation

3Complete results may be viewed at https://melissadale.github.io/
WIFS2023/
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(c) MIT LL TRIMODAL Score Set

Fig. 2: Estimated TMR at FMR=0.1% for 50% incomplete
score vectors found in the unbalanced version of the training
data.

achieves better results for imposter scores. We note that the
average pairwise correlation between modalities is higher
for genuine scores than for imposter scores. However, the
overall mean correlation remains the highest, suggesting that
correlation alone does not account for differences in the
observed performances. These findings highlight the need for
further research to develop an imputation approach that can
deliver robust performance during test time, where the label
classification is unknown in advance.

A. Missing Simulation versus Naturally Occurring Missing

In our experiments, we simulated random missing scores
from complete versions of each dataset to meet the Missing
at Random (MAR) requirements. However, it is important
to highlight that the verification performance of naturally
occurring missing scores within the BIOCOP2008 dataset
is comparable to the performance reported in the simulated
missing data, as presented in Table VII. This demonstrates the
robustness and relevance of our findings, indicating that our
results hold promise for real-world scenarios.

V. CONCLUSION AND DISCUSSION

In this study, we investigated the influence of imputation
techniques on verification performance in multibiometric score
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Fig. 3: Estimated TMR at FMR=0.1% for 50% incomplete
score vectors trained on the balanced training set.

TABLE VII: Comparison of performance observed in natu-
rally occurring missing value and simulated missing values
observed in the BIOCOP2008 dataset.

Amount Missing TMR@FMR=0.1%
Naturally Missing 30.39% 81.68
Simulated Missing 30% 80.20 (+/- 5.0)

datasets. Our findings have important implications for im-
proving the accuracy and reliability of multibiometric systems
with missing scores. We summarize key observations and the
resulting recommendations below.

Firstly, our results consistently demonstrate the benefits of
imputation over not imputing missing scores, regardless of
the type of scores being imputed. By incorporating imputation
into the data preprocessing stage, multibiometric systems can
benefit from more complete score data, thereby improving
overall system performance. Recommendation 1: Enhance
multibiometric system design by integrating imputation tech-
niques. Invest time in finding the most appropriate approach
for your data.

Secondly, we observed that imputation methods tend to
favor the overrepresented class, introducing biases in the
imputed scores. To mitigate this issue, we emphasize the
importance of balancing the classes within the training dataset.
Despite the potential need to drop a substantial number
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of data points from the overrepresented class, our analysis
demonstrates that this step does not severely harm the overall
verification performance. Balancing the training data helps
alleviate biases and ensures fair representation of both genuine
and imposter scores, leading to more reliable and unbiased
performance evaluation. Recommendation 2: Balance the
imposter and genuine score vectors in the training set. Al-
though balancing the training data may involve disregarding a
significant number of score vectors from the overrepresented
class, it is important to note that the performance of the bal-
anced versions in the test set is not significantly compromised
for the datasets analyzed.

Furthermore, our study highlights the effectiveness of dif-
ferent imputation approaches based on the classification of
the missing scores. Specifically, multivariate imputation ap-
proaches excel in estimating missing genuine scores, while
mean or median imputation methods outperform multivariate
approaches for imputed imposter scores. Recommendation 3:
When designing an imputation approach, consider the nature
of missing scores. Understanding which types of scores are
more prone to being missing can inform the development
of targeted and effective imputation strategies. By tailoring
the imputation process to the specific characteristics of the
missing scores, we can enhance the accuracy and reliability
of the overall biometric system. This observation suggests
future research efforts are required to develop a novel approach
to imputation in multibiometrics. By creating methods to
manage missing scores without prior label knowledge, we can
boost recognition accuracy and strengthen practical biometric
applications.

In conclusion, our study provides insights into the role of
imputation techniques in multibiometric score datasets. By
leveraging imputation, multibiometric systems can enhance
their recognition accuracy and reliability. Balancing the train-
ing data and employing appropriate imputation methods based
on score type are essential considerations for achieving optimal
performance. Our findings contribute to the understanding of
imputation in the context of multibiometric systems and pave
the way for future research in this area.

VI. FUTURE WORKS

While this study has shed light on the role of imputation
techniques in multibiometric score datasets, there are sev-
eral avenues for future research in this area. One important
direction for future work is the development of innovative
imputation methods that can effectively handle missing scores
without relying on prior knowledge of the label. This in-
cludes investigating hybrid approaches that combine multiple
imputation techniques or incorporate other data preprocess-
ing methods. Hybrid methods have the potential to leverage
the strengths of different imputation techniques and improve
overall system performance. Additionally, although balancing
the training data was found to mitigate biases introduced by
imputation methods, further investigation is needed to explore
more advanced techniques for addressing class imbalance.
Future research can explore methods such as oversampling,

undersampling, or generating synthetic data to ensure fair
representation of both genuine and imposter scores in the
training dataset.
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